The role of auditory experience in the formation of neural circuits underlying vocal learning in zebra finches.
نویسندگان
چکیده
The initial establishment of topographic mapping within developing neural circuits is thought to be shaped by innate mechanisms and is primarily independent of experience. Additional refinement within topographic maps leads to precise matching between presynaptic and postsynaptic neurons and is thought to depend on experiential factors during specific sensitive periods in the animal's development. In male zebra finches, axonal projections of the cortical lateral magnocellular nucleus of the anterior neostriatum (lMAN) are critically important for vocal learning. Overall patterns of topographic organization in the majority of these circuits are adult-like throughout the sensitive period for vocal learning and remain stable despite large-scale functional and morphological changes. However, topographic organization within the projection from the core subregion of lMAN (lMAN(core)) to the motor cortical robust nucleus of the archistriatum (RA) is lacking at the onset of song development and emerges during the early stages of vocal learning. To study the effects of song-related experience on patterns of axonal connectivity within different song-control circuits, we disrupted song learning by deafening juvenile zebra finches or exposing them to loud white noise throughout the sensitive period for song learning. Depriving juvenile birds of normal auditory experience delayed the emergence of topographic specificity within the lMAN(core)-->RA circuit relative to age-matched controls, whereas topographic organization within all other projections to and from lMAN was not affected. The projection from lMAN(core) to RA therefore provides an unusual example of experience-dependent modification of large-scale patterns of brain circuitry, in the sense that auditory deprivation influences the development of overall topographic organization in this pathway.
منابع مشابه
Audition-independent vocal crystallization associated with intrinsic developmental gene expression dynamics.
Complex learned behavior is influenced throughout development by both genetic and environmental factors. Birdsong, like human speech, is a complex vocal behavior acquired through sensorimotor learning and is based on coordinated auditory input and vocal output to mimic tutor song. Song is primarily learned during a specific developmental stage called the critical period. Although auditory input...
متن کاملHemispheric dominance underlying the neural substrate for learned vocalizations develops with experience
Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have...
متن کاملNeural circuits. Inhibition protects acquired song segments during vocal learning in zebra finches.
Vocal imitation involves incorporating instructive auditory information into relevant motor circuits through processes that are poorly understood. In zebra finches, we found that exposure to a tutor's song drives spiking activity within premotor neurons in the juvenile, whereas inhibition suppresses such responses upon learning in adulthood. We measured inhibitory currents evoked by the tutor s...
متن کاملThe zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning.
Songbirds are capable of learning their vocalizations by copying a singing adult. This vocal learning ability requires juveniles to hear and memorize the sound of the adult song, and later to imitate it through a process involving sensorimotor integration. Vocal learning is a trait that songbirds share with humans, where it forms the basis of spoken language acquisition, with other avian groups...
متن کاملAuditory experience-dependent cortical circuit shaping for memory formation in bird song learning
As in human speech acquisition, songbird vocal learning depends on early auditory experience. During development, juvenile songbirds listen to and form auditory memories of adult tutor songs, which they use to shape their own vocalizations in later sensorimotor learning. The higher-level auditory cortex, called the caudomedial nidopallium (NCM), is a potential storage site for tutor song memory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2002